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ABSTRACT. In this paper, we investigate the social herding phenomenon
known as informational cascades, in which sequential inter-agent communi-
cation might lead to epistemic failures at group level, despite availability of in-
formation that should be sufficient to track the truth. We model an example of
a cascade, and check the correctness of the individual reasoning of each agent
involved, using two alternative logical settings: an existing probabilistic dy-
namic epistemic logic, and our own novel logic for counting evidence. Based
on this analysis, we conclude that cascades are not only likely to occur but are
sometimes unavoidable by “rational” means: in some situations, the group’s
inability to track the truth is the direct consequence of each agent’s rational
attempt at individual truth-tracking. Moreover, our analysis shows that this is
even so when rationality includes unbounded higher-order reasoning powers
(about other agents’ minds and about the belief-formation-and-aggregation
protocol, including an awareness of the very possibility of cascades), as well
as when it includes simpler, non-Bayesian forms of heuristic reasoning (such
as comparing the amount of evidence pieces).

Social knowledge is what holds the complex interactions that form society to-
gether. But how reliable is social knowledge: how good is it at tracking the truth,
in comparison with individual knowledge? At first sight, it may seem that groups
should be better truth-trackers than the individuals composing them: the group can
“in principle” access the information possessed by each agent, and in addition it
can access whatever follows from combining these individual pieces of informa-
tion using logic.

And indeed, in many situations, this “virtual knowledge” of a large group is
much higher than the knowledge of the most expert member of the group: this is
the phenomenon known as wisdom of the crowds [32]. Some examples of the wis-
dom of the crowds are explainable by the logical notion of distributed knowledge:
the kind of group knowledge that can be realized by inter-agent communication.
But most examples, typically involving no communication, are of a different, more
“statistical” type, and they have been explained in Bayesian terms by Condorcet’s
Jury Theorem [26, 19, 25], itself based on the Law of Large Numbers. In particular,
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some political scientists used (variants and generalizations of) the Jury Theorem,
to provide epistemic arguments in favour of deliberative democracy: this is the
core of the so-called “epistemic democracy” program [26, 19]. Roughly speaking,
the conclusion of this line of research is that groups are more reliable at tracking
the truth than individuals and that the larger the group, the more probable it is that
the majority’s opinion is the right one.

However, the key word in the above paragraph is virtual (as in “virtual knowl-
edge” of a group). Most explanations based on (variants of) the Jury Theorem
seem to rely on a crucial condition: agents do not communicate with each other,
they only secretly vote for their favorite answer. Their opinions are therefore taken
to be completely independent of each other.! In contrast, the logical notion of
distributed knowledge is tightly connected to communication: by sharing all they
know, the agents can convert their virtual knowledge into actual knowledge. But
without communication, how do the agents get to actualize the full epistemic po-
tential of the group? Or do they, ever?

There seems to be a tension between the two ingredients needed for maximiz-
ing actual group knowledge: independence (of individual opinions) versus sharing
(one’s opinions with the group). Independence decreases when inter-agent com-
munication is allowed, and in particular when agents are making public and se-
quential guesses or decisions. In such cases, some agents’ later epistemic choices
might very well be influenced by other agents’ previous choices. Being influenced
in this way may be perfectly justifiable on rational grounds at an individual level.
After all, this is what discussion and deliberation are all about: exchanging infor-
mation, so that everybody’s opinions and decisions are better informed, and thus
more likely to be correct. So, at first sight, it may seem that communication and
rational deliberation can only be epistemically beneficial to each of the agents,
and hence can only enhance the truth-tracking potential of the group. But in fact
the primary consequence of communication, at the group level, is that the agents’
epistemic choices become correlated (rather than staying independent). This cor-
relation undermines the assumptions behind positive theoretical results (such as
the Jury Theorem), and so the conclusion will also often fail. The group’s (or the
majority’s) actual knowledge may fall way behind its “virtual knowledge”: indeed,
the group may end up voting unanimously for the wrong option!

Informational cascades are examples of such “social-epistemic catastrophes”
that may occur as a by-product of sequential communication. By observing the
epistemic decisions of the previous people in a sequence, an individual may ratio-
nally form an opinion about the information that the others might have, and this
opinion may even come to outweigh her other (private) information, and thereby
affect her epistemic decision. In this way, individuals in a sequence might be “ra-

But see e.g. [19] for majority truth-tracking in conditions that allow for some very mild forms of
communication within small subgroups.
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tionally” led to ignore their own private evidence and to simply start following the
crowd, whether the crowd is right or wrong. This is not mindless imitation, and
it is not due to any irrational social-psychological influence (e.g. group pressure
to conform, brainwashing, manipulation, mass hysteria etc). Rather, this is the
result of rational inference based on partial information: it is not just a cascade,
but an “informational” cascade. A classical example is the choice of a restau-
rant. Suppose an agent has some private information that restaurant A is better
than restaurant B. Nevertheless, when arriving at the adjacent restaurants she sees
a crowded restaurant B and an empty restaurant A, which makes her decide to
opt for restaurant B. In this case our agent interprets the others’ choice for B as
conveying some information about which restaurant is better and this overrides
her independent private information. However, it could very well be that all the
people in restaurant B chose that restaurant for the exact same reason. Other ex-
amples of informational cascades include bestseller lists for books, judges voting,
peer-reviewing, fashion and fads, crime etc [13].

While models of such phenomena were independently developed in [12] and
[6], the term informational cascades is due to [12]. A probabilistic treatment of
cascades, using Bayesian reasoning, can be found in [15]. Traditionally investi-
gated by the Social Sciences, these social-informational phenomena have recently
become subject of philosophical reflection, as part of the field of Social Episte-
mology [17, 18]. In particular, [21] gives an excellent philosophical discussion of
informational cascades (and the more general class of “info-storms”), their triggers
and their defeaters (“info-bombs”), as well as the epistemological issues raised by
the existence of these social-epistemic phenomena.

In a parallel evolution, logicians have perfected new formal tools for exploring
informational dynamics and agency [8], and for modeling public announcements
and other forms of distributed information flow. An example is the fast-growing
field of Dynamic-Epistemic Logic (DEL for short), cf. [8], [4], [14] etc. More
recently, variants of DEL that focus on multi-agent belief revision [3, 7, 5] and on
the social dynamics of preferences [10, 27] have been developed and used to inves-
tigate social-epistemic phenomena that are closely related to cascades: epistemic
bandwagonning [22], mutual doxastic influence over social networks [31, 30], and
pluralistic ignorance [29, 20].

The time seems therefore ripe for an epistemic-logical study of informational
cascades. In this paper, we take the first step in this direction, by modeling “ratio-
nal” cascades in a logical-computational setting based on (both probabilistic and
more qualitative) versions of Dynamic-Epistemic Logic.

When the total sum of private information possessed by the members of a group
is in principle enough to track the truth, but nevertheless the group’s beliefs fail
to do so, one might think that this is due to some kind of “irrationality” in the
formation and/or aggregation of beliefs (including unsound reasoning and mis-
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interpretation of the others’ behavior, but possibly also lack of cooperation, lack
of relevant communication, lack of trust etc). However, this is not always the case,
as was already argued in the original paper [12]. One of the standard examples of
an informational cascade (the “Urn example” which will be discussed in section
1), has been used to show that cascades can be “rational”. Indeed, in such exam-
ples, the cascade does seem to be the result of correct Bayesian reasoning [15]:
each agent’s opinion/decision is perfectly justified, given the information that is
available to her. A Bayesian model of this example is given in [15] and repro-
duced by us in section 1. The inescapable conclusion seems to be that, in such
cases, individual rationality may lead to group “irrationality”.

However, what is typically absent from this standard Bayesian analysis of infor-
mational cascades is the agents’ higher-order reasoning (about other agents’ minds
and about the whole sequential protocol in which they are participating). So one
may still argue that by such higher-order reflection (and in particular, by becom-
ing aware of the dangers inherent in the sequential deliberation protocol), “truly
rational” agents might be able to avoid the formation of cascades. And indeed, in
some cases the cascade can be prevented simply by making agents aware of the
very possibility of a cascade.

In this paper, we prove that this is not always the case: there are situations
in which no amount of higher-order reflection and meta-rationality can stop a cas-
cade. To show this, we present in section 2 a formalization of the above-mentioned
Urn example using Probabilistic Dynamic Epistemic Logic [9, 24]. This setting
assumes perfectly rational agents able to reflect upon and reason about higher lev-
els of group knowledge: indeed, epistemic logic takes into account all the levels
of mutual belief/knowledge (beliefs about others’ beliefs etc) about the current
state of the world; while dynamic epistemic logic adds also all the levels of mutual
belief/knowledge about the on-going informational events (“the protocol”). The
fact that the cascade can still form proves our point: cascades cannot in general be
prevented even by the use of the most perfect, idealized kind of individual ratio-
nality, one endowed with unlimited higher-level reflective powers. Informational
cascades of this “super-rational” kind can be regarded as “epistemic Tragedies of
the Commons”: paradoxes of (individual-versus-social) rationality. In such con-
texts, a cascade can only be stopped by an external or “irrational” force, acting as
deus ex machina: an‘“‘info-bomb”, in the sense of [21]. This can be either an in-
tervention from an outside agent (with different interests or different information
that the agents engaged in the cascade), or a sudden burst of “irrationality” from
one of the participating agents.

In section 3 we address another objection raised by some authors against the
Bayesian analysis of cascades. They argue that real agents, although engaging in
cascades, do it for non-Bayesian reasons: instead of probabilistic conditioning,
they seem to use “rough-and-ready” qualitative heuristic methods, e.g. by simply
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counting the pieces of evidence in favor of one hypothesis against its alternatives.
To model cascades produced by this kind of qualitative reasoning (by agents who
still maintain their higher-level awareness of the other agents’ minds), we intro-
duce a new framework — a multi-agent logic for counting evidence. We use this
setting to show that, even if we endow our formal agents only with a heuristic way
of reasoning which is much less sophisticated, more intuitive and maybe more re-
alistic than full-fledged probabilistic logic, they may still “rationally” engage in
informational cascades. Hence, the above conclusion can now be now extended
to a wider range of agents: as long as the agents can count the evidence, then no
matter how high or how low are their reasoning abilities (even if they are capa-
ble of full higher-level reflection about others’ minds, or dually even if they can’t
go beyond simple evidence counting), their individual rationality may still lead to
group “irrationality”.

1 An Informational Cascade and its Bayesian Analysis

We will focus on a simple example that was created for studies of informational
cascades in a laboratory [1, 2]. Consider two urns, respectively named Uy, and
Up, where urn Uy, contains two white balls and one black ball, and urn Upg con-
tains one white ball and two black balls. One urn is randomly picked (say, using
a fair coin) and placed in a room. This setup is common knowledge to a group
of agents, which we will denote a1, as, ..., a,, but they do not know which of the
two urns is in the room. The agents enter the room one at a time; first a1, then as,
and so on. Each agent draws one ball from the urn, looks at it, puts it back, and
leaves the room. Hence, only the person in the room knows which ball she drew.
After leaving the room she makes a guess as to whether it is urn Uy or Up that is
placed in the room and writes her guess on a blackboard for all the other agents to
see. Therefore, each individual a; knows the guesses of the previous people in the
sequence a1, asg, ..., a, before entering the room herself. It is common knowledge
that they will be individually rewarded if and only if their own guess is correct.

In this section we give the standard Bayesian analysis of this example, following
the presentation in [15]. Let us assume that in fact urn Up has been placed in
the room. When a; enters and draws a ball, there is a unique simple decision
rule she should apply: if she draws a white ball it is rational to make a guess for
Uw, whereas if she draws a black one she should guess Ug. We validate this
by calculating the probabilities. Let w; denote the event that a; draws a white
ball and b; denote the event that she draws a black one. The proposition that it is
urn Uyy which is in the room will be denoted similarly by Uy, and likewise for
Up. Given that it is initially equally likely that each urn is placed in the room
the probability of Uy is & (P(Uw) = 3), and similarly for Up. Observe that
P(wy) = P(by) = 5. Assume now that a; draws a white ball. Then, via Bayes’
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rule, the posterior probability of Uy is

1.2
PGlon) - OV Plnit) 432

Hence, it is indeed rational for a; to guess Uyy if she draws a white ball (and to
guess Up if she draws a black ball). Moreover, when leaving the room and making
a guess for Uyy (resp. Up), all the other individuals can infer that she drew a white
(resp. black) ball.

When as enters the room after a;, she knows the color which a; drew and it
is obvious how she should guess if she draws a ball of the same color. If a; drew
a white ball and ay draws a white ball, then ay should guess Uy,. Formally, the
probability of Uy, given that both a1 and ao draw white balls is

P(Uw) - P(wi,ws|Uw) _5-3-3 4
P(wl,UJg) S 5'

P(UW|"UJ1, wZ) =

A similar reasoning applies if both drew black balls. If as draws an opposite
color ball of a;, then the probabilities for Uy and U become equal. For simplic-
ity we will assume that any individual faced with equal probability for Uy, and
Up will guess for the urn that contains more balls of the color she saw herself:
if aq drew a white ball and ao draws a black ball, as will guess Ug.2 Hence, in-
dependent of which ball a; draws, as will always guess for the urn matching the
color of her privately drawn ball. We assume that this tie-breaking rule is common
knowledge among the agents too. In this way, every individual following a2 can
also infer the color of as’s ball.

When a3 enters, a cascade can arise. If a; and ay drew opposite color balls, ag
is rational to guess for the urn that matches the color of the ball she draws. Never-
theless, if a; and ay drew the same color of balls (given the reasoning previously
described, a3 will know this), say both white, then no matter what color of ball a3
draws the posterior probability of Uy, will be higher than the probability of Up
(and if a1 and a9 both drew black balls the other way around). To check this let
us calculate the probability of Uy, given that a; and ao drew white balls and ag
draws a black one:

P(Uw) - P(wy, wy,bs|Uw) _ 5-3-5-35 2

P(Uw |wi, w2, b3) = P(ws, ws, bs) = T =3

It is obvious that P(Uyy |ws, w2, w;) will be even larger, thus whatever ball ag
draws it will be rational for her to guess for Uy,. Hence, if a; and ay draw the

2This tie-breaking rule is a simplifying assumption but it does not affect the likelihood of cascades
arising. Moreover, there seems to be some empirical evidence that this is what most people do and it
is also a natural tie-breaking rule if the individuals assign a small chance to the fact that other people
might make errors [2].
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same color of balls a cascade will start from a5 on!® The individuals following as
should therefore take as’s guess as conveying no new information. Furthermore,
everyone after ag will have the same information as a3 (the information about what
a; and agy drew) and their reasoning will therefore be identical to the one of a3 and
the cascade will continue.

If Ugp is, as we assumed, the urn actually placed in the room and both a; and
as draw white balls (which happens with probability %) then a cascade leading to
everyone making the wrong guess starts. Note, however, that if both a; and as
draw black balls (which happens with probability %), then a cascade still starts,
but this time it will lead to everyone making the right guess. Thus, when a cascade
happens it is four times more likely in this example that it leads to right guesses
than to the wrong guesses. This already supports the claim that rational agents
can be well aware of the fact that they are in a cascade without it forcing them to
change their decisions. The general conclusion of this example is that even though
informational cascades can look irrational from a social perspective, they are not
irrational from the perspective of any individual participating in them.

The above semi-formal analysis summarizes the standard Bayesian treatment
of this example, as given e.g. in [15]. However, as we mentioned in the intro-
duction, several objections can be raised against the way this conclusion has been
reached above. First of all, the example has only been partially formalized, in the
sense that the public announcements of the individuals’ guesses are not explicitly
present in it, neither is the reasoning that lets the individuals ignore the guesses of
the previous people caught in a cascade. Moreover, the Bayesian analysis given
above does not formally capture the agents’ full higher-order reasoning (i.e. their
reasoning about the others’ beliefs and about the others’ higher-order reasoning
about their beliefs etc). So one cannot use the above argument to completely rule
out the possibility that some kind of higher-order reflection may help prevent (or
break) informational cascade: it might be the case that, after realizing that they
are participating in a cascade, agents may use this information to try to stop the
cascade.

For all these reasons, we think it is useful to give a more complete analysis,
using a model that captures both the public announcements and the full higher-
order reasoning of the agents. This is precisely what we will do in the next section,
in the framework of Probabilistic Dynamic Epistemic Logic [9, 24].

3Note that the cascade will start even if we change the tie-breaking rule of az such that she random-
izes her guess whenever she draws a ball contradicting the guess of a;. In this case, if a1 and a2 guess
for the same urn, a3 will not know the color of a2’s ball, but she will still consider it more likely that
az2’s ball matches the ball of a; and hence consider it more likely that the urn which they have picked
is in the one in the room.
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2 A Probabilistic Logical Model

In this section we will work within the framework of Probabilistic Dynamic Epis-
temic Logic [9, 24]. Our presentation will be based on a simplified version of the
setting from [9], in which we assume that agents are introspective as far as their
own subjective probabilities are concerned (so that an agent’s subjective probabil-
ity assignment does not depend on the actual state of the world but only on that
world’s partition cell in the agent’s information partition). We also use slightly
different graphic representations, which make explicit the odds between any two
possible states (considered pairwise) according to each agent. This allows us to
present directly a comparative treatment of the rational guess of each agent and
will make obvious the similarity with the framework for “counting evidences” that
we will introduce in the next section. We start with some definitions.

DEFINITION 1 (Probabilistic Epistemic State Models). A probabilistic multi-
agent epistemic state model M is a structure (S, A, (~q)acA, (Pa)aca, ¥, || @)
such that:

S is a set of states (or “worlds”);

A is a set of agents;

e for each agent a, ~, C S x S is an equivalence relation interpreted as agent
a’s epistemic indistinguishability. This captures the agent’s hard informa-
tion about the actual state of the world;

e foreachagenta, P, : S — [0, 1] is a map that induces a probability measure
on each ~,-equivalence class (i.e., we have Y {P,(s") : s’ ~, s} =1
for each a € A and each s € §). This captures the agent’s subjective
probabilistic information about the state of the world;

e U is a given set of “atomic propositions”, denoted by p, g, . ... Such atoms
p are meant to represent ontic “facts’ that might hold in a world.

o ||o] : ¥ — P(5)isa“valuation” map, assigning to each atomic proposition
p € ¥ some set of states ||p|| C S. Intuitively, the valuation tells us which
facts hold in which worlds.

DEFINITION 2 (Relative Likelihood). The relative likelihood (or “odds”) of a
state s against a state ¢ according to agent a, [s : t],, is defined as

Po(s)

Pa(t)

[s:t]q =

We graphically represent probabilistic epistemic state models in the following
way: each state is drawn as an oval, having inside it the name of the state and the
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facts p that are “true” at the state (i.e. the atomic sentences p having this state in
their valuation ||p||); and for each agent a € A, we draw a-labeled arrows going
from each state s towards all the states in the same a-information cell to which a
attributes equal or higher odds (than to state s). Therefore, the qualitative arrows
represent both the hard information (indistinguishability relation) and the proba-
bility ordering relative to an agent, pointing towards the indistinguishable states
that she considers to be at least as probable. To make explicit the odds assigned by
agents to states, we label these arrows with the quantitative information (followed
by the agents’ names in the brackets). For instance, the fact that [s : ], = % is
encoded by an a-arrow from state s to state ¢ labeled with the quotient v : S(a).
For simplicity, we don’t represent the loops relating each state to itself, since they
don’t convey any information that is specific to a particular model: in every model,
every state is a-indistinguishable from itself and has equal odds 1 : 1 to itself.

To illustrate probabilistic epistemic state model with odds, consider the initial
situation of our urn example presented in Section 1 as pictured in Figure 1. In
this initial model M, it is equally probable that Uy, or Up is true (and therefore
the prior odds are equal) and all agents know this. The actual state (denoted by
the thicker oval) sp satisfies the proposition Upg, while the state sy satisfies the
proposition Uy,. The bidirectional arrow labeled with “1:1 (all a)” represents the
fact that all agents consider both states equally probable.

1:1 (all a) SB
Up

Figure 1. The initial probabilistic state model M, of the urn example

DEFINITION 3 (Epistemic-probabilistic language). As in [9], the “static” lan-
guage we adopt to describe these models is the epistemic-probabilistic language
due to Halpern and Fagin [16]. The syntax is given by the following Backus-Naur
form:

¢ = plelere| Kaplar Pa(o)+...+an Palp) 28
where p € W are atomic propositions, a € A are agents and aq, . .., a,, 8 stand
for arbitrary rational numbers. Let us denote this language by L.
The semantics is given by associating to each formula ¢ and each model M =
(S, A, (~a)aca, (Pa)aca), some interpretation ||¢||apm C S, given recursively by
the obvious inductive clauses*. If s € ||¢||pm C S, then we say that ¢ is true at

4Tt is worth noting that, when checking whether a given state s belongs to ||¢||, every expression of
the form Pg (v) is interpreted conditionally on agent a’s knowledge at s, i.e. as Po (][9] N {s' € S :
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state s (in model M).
In this language, one can introduce strict inequalities, as well as equalities, as
abbreviations, e.g.:

Po(p) > Po(¥) = ~(Po(¥) — Palp) > 0),

Po(p) = Po(¥) = (Pa(p) = Pa(v) > 0) A (Pa(v) — Palp) > 0)

One can also define an expression saying that an agent a assigns higher odds to ¢
than to 1 (given her current information cell):

[@:w]a >1 = Pa(‘?) >Pa(¢)

To model the incoming of new information, we use probabilistic event models,
as introduced by van Benthem et alia [9]: these are a probabilistic refinement of
the notion of event models, which is the defining feature of Dynamic Epistemic
Logic in its most widespread incarnation [4]. Here we use a simplified setting,
which assumes introspection of subjective probabilities.

DEFINITION 4 (Probabilistic Event Models). A probabilistic event model £ is a
sextuple (E, A, (~g)ac A, (Pa)aca, ®, pre) such that:

e [ is a set of possible events,
o Ais aset of agents;

e ~,C E x FE is an equivalence relation interpreted as agent a’s epistemic
indistinguishability between possible events, capturing a’s hard information
about the event that is currently happening;

e P, gives a probability assignment for each agent a and each ~ ,-information
cell. This captures some new, independent subjective probabilistic informa-
tion gained by the agent during the event: when observing the current event
(without using any prior information), agent a assigns probability P, (e) to
the possibility that in fact e is the actual event that is currently occurring.

e & is afinite set of mutually inconsistent propositions (in the above probabilistic-
epistemic language L), called preconditions;

e pre assigns a probability distribution pre(e|¢) over E for every proposition
¢ € ®. This is an “occurrence probability”: pre(e|¢p) expresses the prior
probability that event e € ¥ might occur in a(ny) state satisfying precondi-
tion ¢;

s’ ~q s}. See [16], [9] for other details.
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As before, the probability P, can alternatively be expressed as probabilistic
odds [e : €], for any two events e, e’ and any agent a. Our event models are
drawn in the same fashion as our state models above: for each agent a, a-arrows
go from a possible event e towards all the events (of a’s information cell) to which
a attributes equal or higher odds. As an example of an event model, consider the
first observation of a ball in our urn case, as represented in the model & from
Figure 2. Here a; draws a white ball from the urn and looks at it. According to all
the other agents, two events can happen: either a; observes a white ball (the actual
event wj ) or she observes a black one (event b;). Moreover, only agent a; knows
which event is the actual one. The expressions pre(Uy) = 2 and pre(Up) = %
depicted at event w; represents that the prior probabilities pre(w; | Uy) that
event wy occurs when Uy is satisfied is 2 while the probability pre(w; | Up)
that event w; happens when Up is satisfied is % (and vice versa for event by). The
bidirectional arrow for all agents except a; represents the fact that agent a; can
distinguish between the two possible events (since she knows that she sees a white
ball), while the others cannot distinguish them and have (for now) no reason to
consider one event more likely than the other, i.e., their odds are 1 : 1.

w1 | pre(Uw) = 1:1 (alla # a1) bi | pre(Uw) =

pre(Up) =

= oo
SITCRA

pre(Up) =

Figure 2. The probabilistic event model &; of agent a; drawing a white ball

To model the evolution of the odds after new information is received, we now
combine probabilistic epistemic state models with probabilistic event models using
a notion of product update.

DEFINITION 5 (Probabilistic Product Update). Given a probabilistic epistemic
state model M = (5, A, (~a)aca, (Pa)aca, ¥, || ®|) and a probabilistic event
model £ = (E, A, (~a)aca, (Pa)aca, @, pre), the updated state model M @ E =
(S, A, (~)aca, (Paca, V', | o], is given by:

S" = {(s,e) € S x E | pre(e | s) # 0},
v =,

Ipll" = {(s,e) € 5"+ s € [Ipll},

(s,e) ~ (t, f) iff s~,tande ~, f,

Do) — Pu(s) - Pale) - pre(e | )
o Z:{]Da(t)'lga(f)'Tfre(f|t):s'\’atve’\“af}7
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where we used the notation

pre(e| s) = Z{pre(e | ¢) : ¢ € @ suchthats € ||| m}

(so that pre(e | s) is either = pre(e|¢s) where ¢, is the unique precondition in &
such that ¢, is true at s, or otherwise pre(e | s) = 0 if no such precondition ¢,
exists).

This definition can be justified on Bayesian grounds: the definition of the new
indistinguishability relation simply says that the agent puts together her old and
new hard information’; while the definition of the new subjective probabilities is
obtained by multiplying the old probability previously assigned to event e (ob-
tained by applying the conditioning rule P,(e) = P,(s) - Pa(e | s) = Pa(s) -
pre(e | ¢s)) with the new probability independently assigned (without using any
prior information) to event e during the event’s occurrence, and then renormaliz-
ing to incorporate the new hard information. The reason for using multiplication
is that the two probabilities of e are supposed to represent two independent pieces
of probabilistic information.®

Again, it is possible, and even easier, to express posterior probabilities in terms
of posterior relative likelihoods:

. o . pre(e | s)
()< (0 e = 2l [e: Fla- D25,

The result of the product update of the initial state model M from Fig. 1 with
the event model &; of Fig. 2 is given by the new model My ® &; of Fig. 3. The
upper right state is the actual situation, in which Up is true, but in which the first
ball which has been observed was a white one. Agent a; knows that she observed
a white ball (wq), but she does not know which urn is the actual one, so her actual
information cell consists of the upper two states, in which she considers Uy to be
twice as likely as Up. The other agents still cannot exclude any possibility.

This is going to change once the first agent announces her guess. To model
this announcement we will use the standard public announcements of [28], where
a (truthful) public announcement ! of a proposition ¢ is an event which has the
effect of deleting all worlds of the initial state model that do not satisfy ¢. Note
that, public announcements !¢ can be defined as a special kind of probabilistic
event models: take £ = {ei,}, ~a= {(e15,€10)}, ® = {0}, pre(ey, | ¢) = 1,
P,(e,) = 1.

SThis is the essence of the “Product Update” introduced by Baltag et alia [4], which forms the basis
of most widespread versions of Dynamic Epistemic Logic.

SIn fact, this feature is irrelevant for our analysis of cascades: no new non-trivial probabilistic
information is gained by the agents during the events forming our cascade example. This is reflected
in the fact that, in our analysis of cascades, we will use only event models in which the odds are 1 : 1
between any two indistinguishable events.
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1:1 (alla # a1)

1:1(alla # a1)

2:1(alla # ay) 2:1(@lla # a1)

(sB,b1)
2:1 (all a) Up

Figure 3. The updated probabilistic state model M ® &; after a; draws a white
ball

Now, after her private observation, agent a; publicly announces that she con-
siders Uy to be more likely than Up. This is a public announcement !([Uy :
UBla, > 1) of the sentence [Uw : Uplq, > 1 (as defined above as an abbrevia-
tion in our language), expressing the fact that agent a; assigns higher odds to urn
Uy than to urn Up. Since all agents know that the only reason a; could consider
Uw more likely than Up is that she drew a white ball (her announcement can be
truthful only in the situations in which she drew a white ball), the result is that all
agents come to know this fact. This is captured by our modelling, where her an-
nouncement simply erases the states (sy,b1) and (sp, b1) and results in the new
model M, of Fig. 4.

2:1 (all a) (sB,w1)
Us

Figure 4. The updated probabilistic state model M after a;’s announcement

By repeating the above very reasoning, we know that, after another observation
of a white ball by agent ay (the event model is as above in Fig. 2 but relative to
agent as instead of agent a1 ) and a similar public announcement of [Uy : Ugla, >
1, the resulting state model M, depicted in Fig. 5, will be such that all agents now
consider Uy four times more likely than Up.

Let us now assume that agent ag enters the room and privately observes a black
ball. The event model &5 of this action is in Figure 6, and is again similar to the
earlier event model (Fig. 2) but relative to agent ag and this time, since a black ball
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(sw,w1,ws) 4:1 (all @) (sB,w1,w2)
UW UB

Figure 5. The updated probabilistic state model M after ao’s announcement

is observed, the actual event is bs.

bz | pre(Uw) =

wz | pre(Uw) = 2 1:1 (all a # a3)
1
3

@I o)

pre(Ug) = pre(Ug) =

Figure 6. The probabilistic event model &3 of a3 drawing a black ball

The result of a3’s observation is then given by the updated state model M5 ® E3
shown in Figure 7.

8:1 (all a) (sB,w1, w2, ws3)
~—

4:1 (all a # a3)

4:1 (all @ # as3)

2:1 (all a # a3) 2:1 (all a # a3)

(sw, w1, wa, b3) 2:1 (all a) (sB,w1,w2,b3)
UW Up

Figure 7. The probabilistic state model Mo ® E5 after a3 draws a black ball

Since only agent a3 knows what she has observed, her actual information cell
only contains the states in which the event b3 has happened, while all other agents
cannot distinguish between the four possible situations. Moreover, agent ag still
considers Uyy more probable than Up, irrespective of the result of her private ob-
servation (w3 or b3). So the fact that [Uw : Ugla, > 1 is now common knowledge
(since it is true at all states of the entire model). This means that announcing this
fact, via a new public announcement of [Uw : Ug],, > 1 will not delete any state:
the model M after the announcement is simply the same as before (Fig. 7).
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So the third agent’s public announcement bears no information whatsoever:
an informational cascade has been formed, even though all agents have reasoned
correctly about probabilities. From now on, the situation will keep repeating itself:
although the state model will keep growing, all agents will always consider Uyy
more probable than Up in all states (irrespective of their own observations). This
is shown formally by the following result.

PROPOSITION 6. Starting in the model in Fig. 1 and following the above pro-
tocol, we have that: after n — 1 private observations and public announcements
e, ([Uw : UBla; > 1)...,en—1,([Uw : UBla,_, > 1) byagentsay, ... ,an_1,
withn > 3, e; = w1 and es = wo, the new state model M, _1 will satisfy

[Uw :Ugla > 1, foralla € A.

Proof. To show this, we prove a stronger
CLAIM: after n — 1 private observations and announcements as above, the new
state model M,,_; will satisfy

[Uw : Upla;, > 2, foralli < n, and

[Uw : Ugla, >4, foralli > n.

From this claim, the desired conclusion follows immediately.

PROOF OF CLAIM:

We give only a sketch of the proof, using an argument based on partial descrip-
tions of our models. The base case n = 3 was already proved above. Assume the
inductive hypothesis for n — 1. By lumping together all the Uy -states in M,,_1,
and similarly all the Up-states, we can represent this hypothesis via the following
partial representation of M,,_1:

>2:1(all az,i < n)
U; U,
@ >4:1(all az,7 > n) @
Note that this is just a “bird’s view” representation: the actual model M,,_; has

272 states. To see what happens after one more observation e,, by agent n, take
the update produce of this representation with the event model &,,, given by:

wy | pre(Uw) = 2 1:1 (all @ # an) bn | pre(Uw) =

pre(Up) = %

1
3
_2
pre(Up) = 3

The resulting product is:
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@ >1:1(allaz,i < n) U
s W
>2:1(allag,i > n) 2
\ (all a # an)

2:1 (all a # an)

(all a # an)
2:1 (all @ # an)

@ >4:1(all a;,i < n) @
o >8:1(all as,i > n) o
where for easier reading we skipped the numbers representing the probabilistic
information associated to the diagonal arrows (numbers which are not relevant for
the proof).

By lumping again together all indistinguishable Uyy -states in M,,_1, and sim-
ilarly all the Up-states, and reasoning by cases for agent a,, (depending on her
actual observation), we obtain:

U >2:1(all as,7 < n) U
w >4:1(all az,% > n) B

Again, this is just a bird’s view: the actual model has 2" states. But the
above partial representation is enough to show that, in this model, we have [Uy :
Ugla, > 2foralli < n+ 1, and [Uy : Ugl,, > 4 foralli > n + 1. Since in
particular [Uy : Ugl,, > 1 holds in all the states, this fact is common knowledge:
so, after publicly announcing it, the model stays the same! Hence, we proved the
induction step for n. |

So, in the end, all the guesses will be wrong: the whole group will assign a
higher probability to the wrong urn (Uy). Thus, we have proved that individual
Bayesian rationality with perfect higher-level reflective powers can still lead to
“group irrationality”. This shows that in some situations there simply is no higher-
order information available to any of the agents to prevent them from entering the
cascade; not even the information that they are in a cascade can help in this case.
(Indeed, in our model, after the two guesses for Uy of a; and aq, it is already
common knowledge that a cascade has been formed!)

3 A Logical Model Based on Counting Evidence

A possible objection to the model presented in the previous section could be that
it relies on the key assumption that the involved agents are perfect Bayesian rea-
soners. But many authors argue that rationality cannot be identified with Bayesian
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rationality. There are other ways of reasoning that can still be deemed rational
without involving doing cumbersome Bayesian calculations. In practice, many
people seem to use much simpler “counting” heuristics, e.g. guessing Uy, when
one has more pieces of evidence in favor of Uyy than in favor of Up (i.e. one
knows that more white balls were drawn than black balls).

Hence, there are good reasons to look for a model of informational cascades
based on counting instead of Bayesian updates. In this section we present a for-
malized setting of the urn example using a notion of rationality based on such a
simple counting heuristic. The logical framework for this purpose is inspired by
the probabilistic framework of the previous section. However, it is substantially
simpler. Instead of calculating the probability of a given possible state, we will
simply count the evidence in favor of this state. More precisely, we label each
state with a number representing the strength of all evidence in favor of that state
being the actual one. This intuition is represented in the following formal defini-
tion:

DEFINITION 7 (Counting Epistemic Models). A counting multi-agent epistemic
model M is a structure (S, A, (~a)aca, f, ¥, | ®||) such that:

e S is a set of states,

e Ais aset of agents,

~, € S x S is an equivalence relation interpreted as agent a’s epistemic
indistinguishability,

f S — Nis an “evidence-counting” function, assigning a natural number
to each state in S,

e W is a given set of atomic sentences,

o]l : ¥ — P(S) is a valuation map.

We can now represent the initial situation of the urn example by the model of
Figure 8. The two possible states sy and sp correspond to Uy (resp. Up) being
placed in the room. The notation Uyy ;0 at the state sy represents that f(sy) = 0
and that the atomic proposition Uyy is true at sy (and all other atomic propositions
are false). The line between sy and s labeled by “all a” means that the two states
are indistinguishable for all agents a. Finally, the thicker line around s g represents
that sp is the actual state.

We now turn to the issue of how to update counting epistemic models. How-
ever, first note that, at this stage there is not much that distinguish counting epis-
temic models from probabilistic ones. In the case the models are finite, one can
simple sum the values of f(w) for all states w in a given information cell and
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Sw all a SB
Uw ; 0 Up; 0

Figure 8. The initial counting model of the urn example

rescale f(w) by this factor thereby obtaining a probabilistic model from a count-
ing model. Additionally, assuming that all probabilities are rational numbers one
can easily move the other way as well. In spite of this, when we move to dynamic
issues, the counting framework becomes much simpler as we do not need to use
multiplication together with Bayes’ rule and renormalization, we can simply use
addition. Here are the formal details:

DEFINITION 8 (Counting Event Models). A counting event model £ is a quintu-
ple (E, A, (~4)aca, P, pre) such that:

e [ is a set of possible events,
e Ais aset of agents,

e ~,C FE X F is an equivalence relation interpreted as agent a’s epistemic
indistinguishability,

e & is a finite set of pairwise inconsistent propositions,

e pre : E — (& — (NU{L})) is a function from F to functions from @
to the natural numbers (extended with L)7. It assigns to each event e € F
a function pre(e), which to each proposition ¢ € ® assigns the strength of
evidence that the event e provides for ¢.

As an example of a counting event model, the event model of the first agent
drawing a white ball is shown in Figure 9. In this event model there are two events
wy and by, where the actual event is wy (marked by the thick box). A notation
like pre(Uy) = 1 at wy simply means that pre(w; )(Uy ) = 1.8 Finally, the line
between w; and by labeled “all @ # a;” represents that the events w; and by are
indistinguishable for all agents a except a;.

A counting epistemic model is updated with a counting event model in the fol-
lowing way:

"Here, L essentially means “undefined”: so it is just an auxiliary symbol used to describe the case
when pre is a partial function.

8To fit the definition of counting event models properly, Uy and U must be pairwise inconsistent,
however, this claim fits perfectly with the example where only one of the urns is placed in the room
and we could simple replace Uy by ~Up.
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wi; | pre(Uw) =1 alla # a1 bi; | pre(Uw) =0
pre(Ug) =0 pre(Ug) =1

Figure 9. The counting event model of a; drawing a white ball

DEFINITION 9 (Counting Product Update). Given a counting epistemic model
M = (54, (~a)aca, [,¥,| o |) and a counting event model £ = (E, A, (~,
)ac A, pre), we define the product update M E = (S', A, (~) )aca, /T, | o]))
by
S"={(s,e) € S x E|pre(s,e) # L},
U=,
Ipll” ={(s,e) € S": s € |Ipll},
(s,€) ~q (t, f)iff s ~q tand e ~, f,

f'((s.e)) = f(s) +pre(s,e), for(s,e) €S,
where we used the notation pre(s, e) to denote pre(e)(¢s) for the unique ¢; € @
such that s € ||| a1, if such a precondition ¢, € P exist, and otherwise we put
pre(s,e) = L.

With this definition we can now calculate the product update of the models of
the initial situation (Fig. 8) and the first agent drawing a white ball (Fig. 9). The
resulting model is shown in Figure 10.

(sw,w1) all a (sB,w1)
UW_iy \&; 0

alla # a1
alla # a1

alla # a1 alla # a1

G b N\ all o Gnb1)

Uw ;0 Up; 1

Figure 10. The updated counting model after a; draws a white ball

We need to say how we will represent the action that agent a; guesses for urn
Uw . As in the probabilistic modeling we will interpret this as a public announce-
ment. A public announcement of ¢ in the classical sense of eliminating all non-¢
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states, is a special case of a counting event model with just one event e, & = {¢},
~qa= {(e,e)} forall a € A, and pre(e)(¢) = 0. Setting pre(e)(¢) = 0 reflects
the choice that we take public announcements not to provide any increase in the
strength of evidence for any possible state, but only revealing hard information
about which states are possible. In the urn example it is the drawing of a ball from
the urn that increases the strength of evidence, whereas the guess simply convey
information about the announcer’s hard information about the available evidence
for either Uy, or Up. Similar to the previous section, we will interpret the an-
nouncements as revealing whether their strength of evidence for Uy is smaller or
larger than their strength of evidence for Up.

We therefore require a formal language that contains formulas of the form ¢ <,
1), for all formulas ¢ and 1. The semantics of the new formula is given by:

16 <a ¥llam ={s €S fla,s]|dllm) < fla s, [v]r)},

where for any given counting model M = (S, (~4)aca, f, U, | ®||) and any set
of states T" C S we used the notation

fla,s,T) = Z{f(t) : ¢t € T such that ¢ ~, s}.

Now, the event that agent a; announces that she guesses in favor of Uy, will
be interpreted as a public announcement of Up <,, Uy . This proposition is only
true at the states (sy,w;) and (sp,w;) of the above model and thus the states
(sw,b1) and (sp,by) are removed in the resulting model shown in Figure 11.

(sw,w1) all a (sB,w1)
Uw ;1 Up; 0

Figure 11. The counting model after a; publicly announces that Ug <,, Uw

Moreover, the event that as draws a white ball can be represented by an event
model identical to the one for agent a; drawing a white ball (Fig. 9) except that
the label on the line should be changed to “all @ # as”. The updated model after
the event that as draws a white ball will look as shown in Figure 12. Note that in
this updated model, U <,, Uw is only true at (sy,wi,we) and (sp, w1, w2),
thus when a, announces her guess for Uy (interpreted as a public announcement
of Up <4, Uw) the resulting model will be the one of Figure 13.

Assuming that agent a3 draws a black ball this can be represented by an event
model almost identical to the one for agent a; drawing a white ball (Fig. 9). The
only differences are that the label on the line should be changed to “all a # ag)”
and the actual event should be bs. Updating the model of Figure 13 with this event
will result in the model of Figure 14.
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(sw, w1, wa) alla (sB,w1,w2)
Uw ; 2 Up; 0

all a # ag all a # a2

v wr, b2) N all a (g wn, b2)

Uw; 1 Up; 1

Figure 12. The updated counting model after a; draws a white ball

alla (sB,w1,w2)

Up; 0

Figure 13. The counting model after ay publicly announces that Ug <,, Uy

Note that in Figure 14 the proposition Up <4, Uy is true in the entire model.
Hence, agent a3 has more evidence for Uyy than Up and thus, no states will be re-
moved from the model when she announces her guess for Uy (a public announce-
ment of Up <4, Uw). If as had drawn a white ball instead, the only thing that
would have be different in the model of Figure 14 is that the actual state would
be (sp,ws,ws, ws). Therefore, this would not change the fact that a3 guesses
for Uy and this announcement will remove no states from the model either. In
this way, none of the following agents gain any information from learning that
ag guessed for Uyy. Subsequently whenever an agent draws a ball, she will have
more evidence for Uy than for Ug. Thus, the agents will keep guessing for Uyy .
However, these guesses will not delete any more states. Hence, the models will
keep growing exponentially reflecting the fact that no new information is revealed.
In other words, an informational cascade has started. Formally, one can show the
following result:

PROPOSITION 10. Let M,, be the updated model after agent a,, draws either a
white or a black ball. Then, if both a, and as draw white balls (i.e. we are in the
model of Fig. 12), then for alln > 3, Up <,, Uw will be true in all states of M,,.

In words: after the first two agents have drawn white balls all the following
agents will all have more evidence for Uy than Up (no matter which color ball
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(sw, w1, w2, ws3) alla (sB,w1, w2, w3)
Uw ; 3 Ug; 0

alla # a3 alla # a3

(sw,w1,ws,b3) alla (sB,w1,w2,b3)
UW 3 2 UB 5 1

Figure 14. The updated counting model after as draws a black ball

they draw) and will therefore guess for Uyy, however, these guesses will be unin-
formative to the subsequent agents as the public announcement of Ug <, Uy will
delete no worlds.

Before we can prove this proposition we need some definitions. For all n > 3,
let &, be the event model that agent a,, draws either a white ball (w,,) or a black
ball (b,,)°, for instance &; is shown in Figure 9. Furthermore, let M,, denote
the model obtained after updating with the event &,, hence M,, = M, _1 ® &,.
The model M3 is shown in Figure 14. We will denote the domain of M,, by
dom(M,,). For a proposition ¢, we will by f"(¢) denote > {f(s) | s € ||¢]|m,, }-
Note that fg(Uw) =2, fS(Uw) =5, f2(UB) =0, and fg(UB) =1

Now Proposition 2 follows from the following lemma:

LEMMA 11. Forall n > 3 the following hold:

(i) Let [w], = dom(My_1) x {w,} and [b], = dom(M;,_1) x {b,}.
Then [w),, and [b],, are the only two information cells of agent a,, in M,,
dom(M,,) = ([w], U [b]n), and |[w],] = |[b].] = 2"~2. Additionally, for
all k > n, M,, contains only one information cell for agent ay, namely the
entire dom(M,,). Furthermore, Uy is true in 2" =3 states of [w),, and 2" 3
states of [b],,, and similar, U is true in 23 states of [w),, and 23 states

of [b]n-

(ii) For s € [W]n, f(an,s,Uw) = f* Y Uw) + 2" 3and f(an,s,Up) =
=Y Ug). For s € [bln, f(an,s,Uw) = f*Y(Uw) and f(a,,s,Ug) =
fn_l(UB) + 271—3.

9Which color ball a,, draws does not matter as it only affect which state will be the actual state.
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(iii) f*(Up)+2""% < f"(Uw).

(iv) Up <a, Uw is true at all states of M,,.

Proof. The proof goes by induction on n. For n = 3 the statements (i) — (iv) are
easily seen to be true by inspecting the model M3 as shown in Figure 14 of section
3. We prove the induction step separately for each of the statements (i) — (iv).

(7): Assume that (4) is true for n. Then, for agent a,,41 the model M,, consists
of a single information cell with 2" ~! states where Uyy is true in half of them and
Up in half of them. Considering the event model &, it is easy to see that updat-
ing with this will result in the model M, 1, where there will be two information
cells for agent a,,41 corresponding to the events w,, 11 and by, 1, i.e. [w],+1 and
[b]n+1, and each of these will have 2n—1 states. It is also easy to see that for all
k > n + 1 there will only be one information cell for ay. Finally, it is also easy to
see that Uy will be true in 2"~ 2 states of [w)],, and 2"~ states of [b],, since U,,
where true in 22 states of M, and likewise for Up.

(#4): Assume that (74) is true for n. Assume that s € [w],41. Then using (),
the definition of the product update, and (%) again, we get:

f(a/n+17 S, UW)

|
7

t) ‘ te [’w}n+1 n Uw}
(t7wn+1)) ‘ te Mn,t € Uw (in Mn)}
t) + pre(wp1)(Uw) | t € My, t € Uy (in M)}

|
7

t)+ 1|t € My, t € Uy (in M,)}
M (Ow) + 2772,

Similarly for Ug we get

flang1,8,Up) = Y {f(t) [t € w1 NUp}

> {f(t) + pre(wn1)(Us) |t € My, t € Up (in My)}
> {f(t)+ 0|t € Myt € Up(inM,)}
= f"(Us).

If s € [b]41 then,
° f(an+17 S, Uw) = fn<Uw) and

° f(an+173,UB) = f”(UB)+2n—3’
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follow by reasoning in similar manner.
(ii7): Assume that f*(Up) +2"~2 < f*(Uw ). Note that from (i) and (ii) we
have that

° f”"'l(UW) = an(Uw) + 2n—2,
o M (Up) =2f"(Up)+ 2" 2.
But, then

fn+1(UB) + anl

2f"(Up) + 272 4 277!
= 2(f"(Up)+2" %) + 2"
< 2f"(Uw) + 272

= "N (Uw).

(v): Now assume that Up <,,, Uw is true at all states of M,,. Consider agent
@n41, We then want to prove that Ug <q,,, U is true at all states of M,, 1.
That is, we need to prove that

f(an+1787 UB) < f(an+1; S, UW)v

for all s € dom(M,,+1). By (i) and the definition of f, we only have to consider
two cases, namely when s € [w],,4+1 and when s € [b],,4+1. Moreover, by (i7) we
just need to prove that

a) fM(Up) < f"(Uw) + 272
b) f*(Up) +2" % < f*(Uw).

It is clear that a) follows from b) and b) follows directly from (7).
This completes the proof. ]

4 Conclusion and Further Research

We provided two logical models of the same example to argue for the somewhat
counterintuitive claim that informational cascades are the direct consequence of
individual rationality, even when rationality includes full higher-order reasoning
or/and is non-Bayesian.

On the question whether real humans are Bayesian reasoners, a variation of
the urn example was conducted as an experiment [2] to test whether people were
using a simple counting heuristic instead of Bayesian update. In this variation,
urn Uy, contained 6 white and 1 black ball, whereas Ug contained 5 white and
2 black balls (in this way, a black ball provides more information than a white
ball). Even though more decisions were consistent with Bayesian update than
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with a simple counting heuristic, the counting heuristic could not be neglected. For
critique of the conclusion that most individuals use Bayesian updating, see [23].
In fact, these experimental results seem to rule out only the simplest counting
heuristic where one compares the number of white balls against the number of
black balls. However, one could argue that in this variation of the experiment
another counting heuristic would be more appropriate (for instance counting one
black ball several times, to reflect the higher weight of this piece of evidence) and
that the experimental results are consistent with such an alternative. In general, our
logic for counting evidence (presented in Section 3) can be used to capture various
forms of “weighting” heuristics.

Another aim for future research is to generalize both the probabilistic logic of
Section 2 and the logic for counting evidence of Section 3 to obtain a general
logic of evidence that can capture both quantitative and qualitative approaches to
reasoning about evidence, where an example of the latter is [11].

A deeper aim is to look at variations of our example, in order to investigate ways
to stop or prevent the cascade. It is easy to see (using Condorcet’s Jury Theorem)
that, if we change the protocol to forbid all communication (thus making individual
guesses private rather public), then by taking a poll at the end of the protocol, the
majority vote will match the correct urn with very high probability (converging to
1 as the number of agents increases to infinity).

This proves that examples such as the one analyzed in this paper are indeed
cases of “epistemic Tragedies of the Commons”: situations in which communi-
cation is actually an obstacle to group truth-tracking. In these cases, a cascade
can be stopped only in two ways: either by “irrational” actions by some of the
in-group agents themselves, or else by outside intervention by an external agent
with different information or different interests than the group. An example of the
first solution is if some of the agents simply disregard the information obtained by
public communication and make their guess solely on the basis of their own ob-
servations: in this way, they lower the probability that their guess is correct (which
is “irrational” from their own individual perspective), but they highly increase the
probability that the majority guess will be correct. An example of the second so-
lution is if the protocol is modified (or only disrupted) by some external agent
with regulative powers (the “referee” or the “government”). Such a referee can
simply forbid communication (thus returning to the protocol in the Condorcet’s
Jury Theorem, which assumes independence of opinions). Or she might require
more communication; e.g. require that the agents should announce, not only their
beliefs about the urns, but also their reasons for these beliefs: the evidence sup-
porting their beliefs. This evidence might be the number of pieces of evidence in
favor of each alternative (in the case that they used the counting heuristics); or it
might be the subjective probability that they assign to each alternative; or finally,
it might be all their available evidence: i.e. the actual color of the ball that they
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observed (since all the rest of their evidence is already public). Requiring agents
to share any of these forms of evidence is enough to stop the cascade in the above
example.

One may thus argue that partial communication (sharing opinions and beliefs,
but not sharing the underlying reasons is evidence) is the problem. More (and
better) communication, more true deliberation based on sharing arguments and
justifications (rather than simple beliefs), may sometimes stop the cascade. How-
ever, there are other examples, in which communicating some of the evidence is
not enough: cascades can form even after each agent shares some of her private
evidence with the group. It is true that a “total communication”, in which every-
body shares all their evidence, all their reasons, all the relevant facts, will be an
effective way of stopping cascades (provided that the agents perfectly trust each
other and they are justified to do so, i.e. nobody lies). In our toy example, this can
be easily done: the relevant pieces of evidence are very few. But it is unrealistic to
require such total communication in a real-life situation: the number of facts that
might be of relevance is practically unlimited, and moreover it might not be clear
to the agents themselves which facts are relevant and which not. So in practice
this would amount to asking the agents to publicly share all their life experiences!
With such a protocol, deliberation would never end, and the moment of decision
would always be indefinitely postponed.

So in practice the danger remains: no matter how rational the agents are, how
well-justified their beliefs are, how open they are to communication, how much
time they spend sharing their arguments and presenting their evidence, there is
always the possibility that all this rational deliberation will only lead the group
into a cascading dead-end, far away from the truth. The only practical and sure
way to prevent cascades seems to come from the existence of a significant number
of “irrational” agents, who simply ignore or refuse to use the publicly available
information and rely only on their own observations. Such extreme, irrational
skeptics will very likely get it wrong more often than the others. But they will
perform a service to society, at the cost of their own expected accuracy: due to
them, in the long run society might correct its entrenched errors, evade its cascades
and get better at collectively tracking the truth.

The conclusion is that communication, individual rationality and social deliber-
ation are not absolute goods. Sometimes (and especially in Science, where the aim
is the truth), it is better that some agents effectively isolate themselves and screen
off some communication for some time. Allowing (and in fact encouraging) some
researchers to “shut themselves up in their ivory tower” for a while, pursuing their
independent thinking and tests without paying attention to the received knowledge
in the field (and preferably without access to any Internet connections), may actu-
ally be beneficial for the progress of Science.
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