

A Logic for Social Influence through Communication

Zoé Christoff

Institute for Logic, Language and Computation
University of Amsterdam

11th European Workshop on Multi-Agent Systems (EUMAS)
Logical Aspects of Multi-Agent System (LAMAS)
Toulouse, December 13 2013

Outline

1) Seligman, Girard & Liu (2011, 2014)

- ▶ social network
- ▶ peer pressure effects,
influence inbetween
“friends”

Outline

1) Seligman, Girard & Liu (2011, 2014)

- ▶ social network
- ▶ peer pressure effects, influence inbetween “friends”

?
+

2) Baltag & Smets (2009, 2013)

- ▶ plausibility
- ▶ effects of group members sharing information with the rest of the group

Outline

1) Seligman, Girard & Liu (2011, 2014)

- ▶ social network
- ▶ peer pressure effects, influence inbetween “friends”

2) Baltag & Smets (2009, 2013)

- ▶ plausibility
- ▶ effects of group members sharing information with the rest of the group

3) Aim: a unified social network plausibility framework

- ▶ model social influence on beliefs through communication among agents in a social network
- ▶ define some particular communication protocols (in the new framework) inspired by 2) to represent some level of influence as defined in 1)

1) Social influence à la Girard, Liu & Seligman

The framework

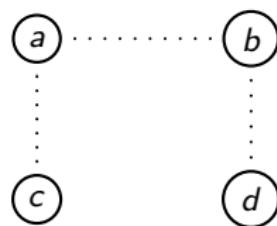
Static hybrid logic to represent who is friend with whom and who believes what
+ an (external) influence operator

The main ideas

- ▶ Agents are influenced by their friends and only by their friends.
- ▶ Simple “peer pressure principle”: I tend to align with my friends.
- ▶ “Being influenced” is defined as “aligning my beliefs to the ones of my friends”.
- ▶ No communication is (at least explicitly) involved. (transparency?)

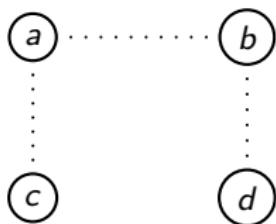
Friends network

Social network frame:



Friends network

Social network frame:



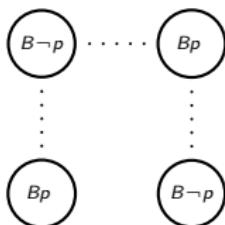
3 possible belief states (with respect to p)

- ▶ Bp
- ▶ $B\neg p$
- ▶ $Up := \neg Bp \text{ and } \neg B\neg p$

Belief revision induced by (direct) social influence

1) Strong influence

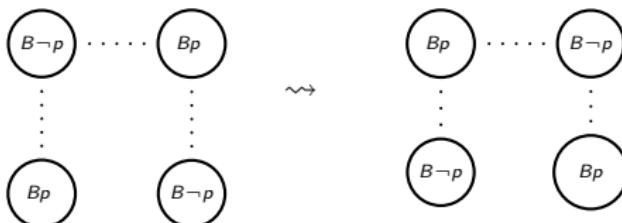
When all of my friends believe that p , I (successfully) *revise with p* . When all of my friends believe that $\neg p$, I (successfully) *revise with $\neg p$* .



Belief revision induced by (direct) social influence

1) Strong influence

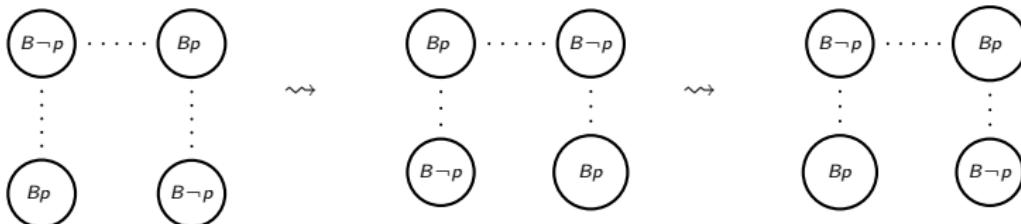
When all of my friends believe that p , I (successfully) *revise with p* . When all of my friends believe that $\neg p$, I (successfully) *revise with $\neg p$* .



Belief revision induced by (direct) social influence

1) Strong influence

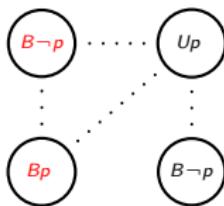
When all of my friends believe that p , I (successfully) *revise with p* . When all of my friends believe that $\neg p$, I (successfully) *revise with $\neg p$* .



Belief contraction induced by social influence

2) Weak influence

None of my friends supports my belief in p and some believe that $\neg p$.
I (successfully) *contract* it.
(And similarly for $\neg p$)



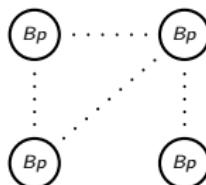
Belief contraction induced by social influence

2) Weak influence

None of my friends supports my belief in p and some believe that $\neg p$.
I (successfully) *contract* it.
(And similarly for $\neg p$)

Stabilization

- ▶ Stable state: applying the social influence operator doesn't change the state of any agent.
- ▶ Stabilization: some configurations will reach a stable state after a finite number of applications of the influence operator (see example of weak influence above) and some won't (see example of strong influence).
- ▶ Sufficient condition for stability: all friends are in the same state.



2) Communication protocols à la Baltag & Smets

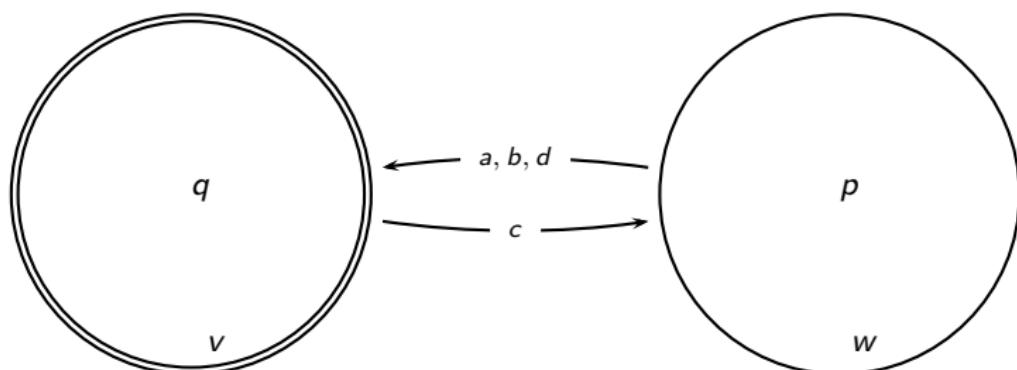
The framework

DEL type: plausibility modeling of (several) doxastic attitudes + communication events

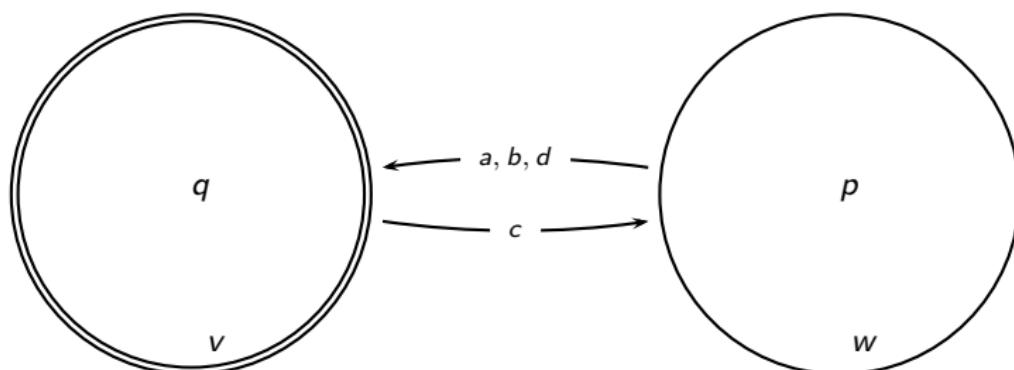
The main ideas

- ▶ Agents communicate via public announcements.
- ▶ Assuming that they trust each other enough, agents all revise their beliefs with each of the announced formula, sequentially.
- ▶ In this sense, each announcement influences everybody (else) into belief revision.

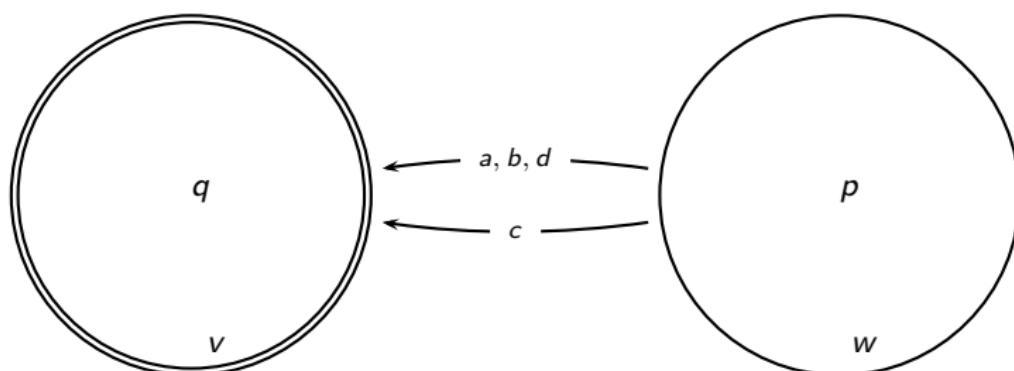
Plausibility model



Plausibility model



Plausibility model



Reaching a stable state of agreement

How to communicate?

- ▶ Agents speak in turn (given expertise rank).
- ▶ An agent announces all and only (non-equivalent) sentences that she believes (exhaustivity + honesty).
- ▶ After a finite number of announcements (and corresponding revisions), everybody holds the same beliefs.
- ▶ This is a stable state: nothing which could be announced by any agent would change anything anymore.

Reaching a stable state of agreement

How to communicate?

- ▶ Agents speak in turn (given expertise rank).
- ▶ An agent announces all and only (non-equivalent) sentences that she believes (exhaustivity + honesty).
- ▶ After a finite number of announcements (and corresponding revisions), everybody holds the same beliefs.
- ▶ This is a stable state: nothing which could be announced by any agent would change anything anymore.

Lexicographic belief merge protocol

$$\rho_a := \prod \{\uparrow \phi : \|\phi\| \subseteq S \text{ such that } \mathcal{M}, w \models B_a \phi\}$$

$$\rho_b := \prod \{\uparrow \phi : \|\phi\| \subseteq S \text{ such that } \mathcal{M}_{[\rho_a]}, w \models B_b \phi\}$$

etc for all $c \in \mathcal{A}$

where \prod is a sequential composition operator and $\mathcal{M}_{[\rho_a]}$ is the new model after joint revision with each formula announced by a .

Big picture

Common features

- ▶ Agents are influenced into revising their beliefs to make them closer to the ones of (some) others.
- ▶ A global agreement state is stable (both under honest communication and under social conformity pressure).

From 1)

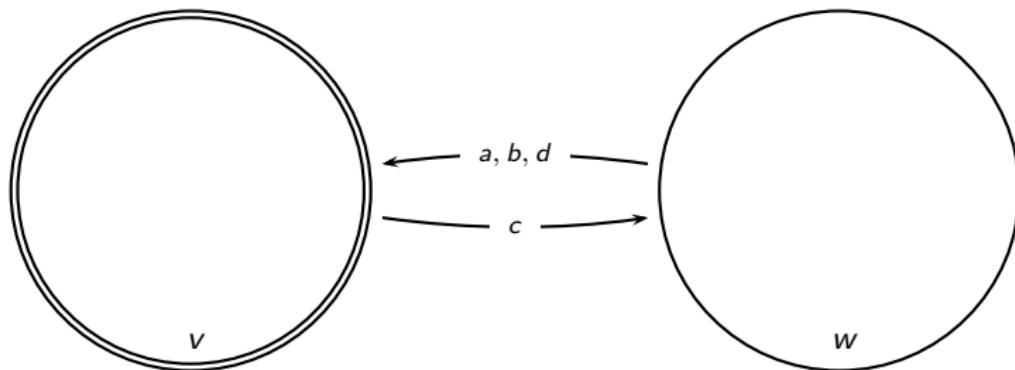
- ▶ Social network
- ▶ Synchronic
- ▶ Over friends only
- ▶ Equal power (among friends)
- ▶ Direct
- ▶ Tools: nominals, \otimes , F

From 2)

- ▶ Plausibility
- ▶ Sequential
- ▶ Over everybody
- ▶ Ranking
- ▶ Via communication
- ▶ Tools: B , \uparrow , $\uparrow\uparrow$

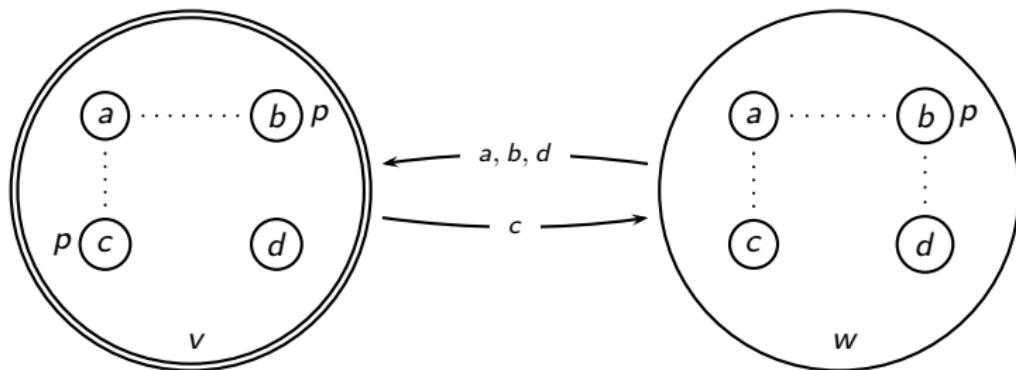
3) A social network plausibility framework

plausibility model:



3) A social network plausibility framework +

Social network plausibility model:



Social network plausibility model

$$\mathcal{M} = (S, \mathcal{A}, \leq_{a \in \mathcal{A}}, \|\cdot\|, s_0, \asymp_{s \in S})$$

- ▶ S is a (finite) set of possible states.
- ▶ \mathcal{A} is a (finite) set of agents.
- ▶ $\leq_a \subseteq S \times S$ is a locally connected preorder, interpreted as the subjective plausibility relation of agent a , for each $a \in \mathcal{A}$
- ▶ $s_0 \in S$ is a designated state, interpreted as the actual state
- ▶ $\asymp_s \subseteq S \times S$ is an irreflexive and symmetric relation, interpreted as friendship, for each state $s \in S$
- ▶ $\|\cdot\| : \Phi \cup N \rightarrow \mathcal{P}(S \times \mathcal{A})$ is a valuation, assigning:
 - ▶ a set $\|p\| \subseteq S \times \mathcal{A}$ to every element p of some given set Φ of “atomic propositions”
 - ▶ a set $\|n\| = S \times \{a\}$ for some $a \in \mathcal{A}$ to every element n of some given set N of “nominals”.

Syntax

$$\phi := p \mid n \mid \neg\phi \mid \phi \wedge \phi \mid F\phi \mid @n\phi \mid B\phi$$

where p belongs to a set of atomic propositions Φ and n to a set of nominals N .

Inherited indexicality

Formulas evaluated both at a state $w \in S$ and at an agent $a \in A$.

- ▶ p : "I am blonde."
- ▶ BFp : "I believe that all my friends are blonde."
- ▶ FBp : "All of my friends believe that they are blonde".

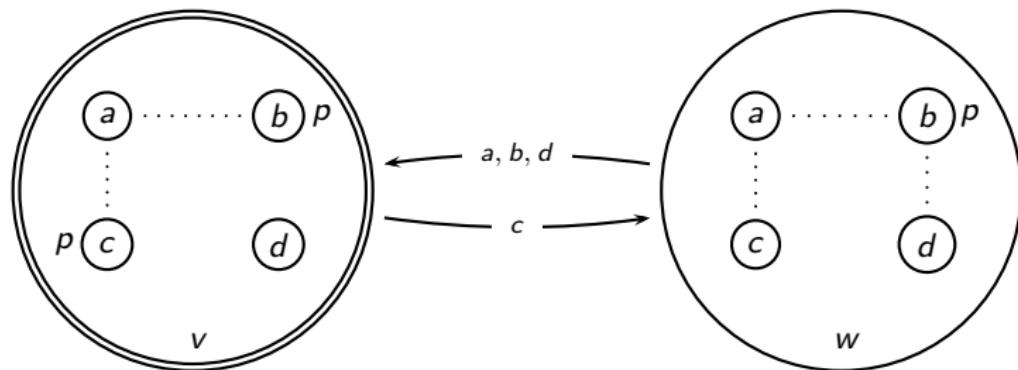
Semantic clauses

- ▶ $\mathcal{M}, w, a \models p$ iff $\langle w, a \rangle \in \|p\|$
- ▶ $\mathcal{M}, w, a \models n$ iff $\langle w, a \rangle \in \|n\|$ iff $a = \underline{n}$
- ▶ $\mathcal{M}, w, a \models \neg\phi$ iff $\mathcal{M}, w, a \not\models \phi$
- ▶ $\mathcal{M}, w, a \models \phi \wedge \psi$ iff $\mathcal{M}, w, a \models \phi$ and $\mathcal{M}, w, a \models \psi$
- ▶ $\mathcal{M}, w, a \models F\phi$ iff $\mathcal{M}, w, b \models \phi$ for all b such that $a \asymp b$
- ▶ $\mathcal{M}, w, a \models @b\phi$ iff $\mathcal{M}, w, \underline{b} \models \phi$
- ▶ $\mathcal{M}, w, a \models B\phi$ iff $\mathcal{M}, v, a \models \phi$ for all $v \in S$ such that $v \in \text{best}_a w(a)$

notation:

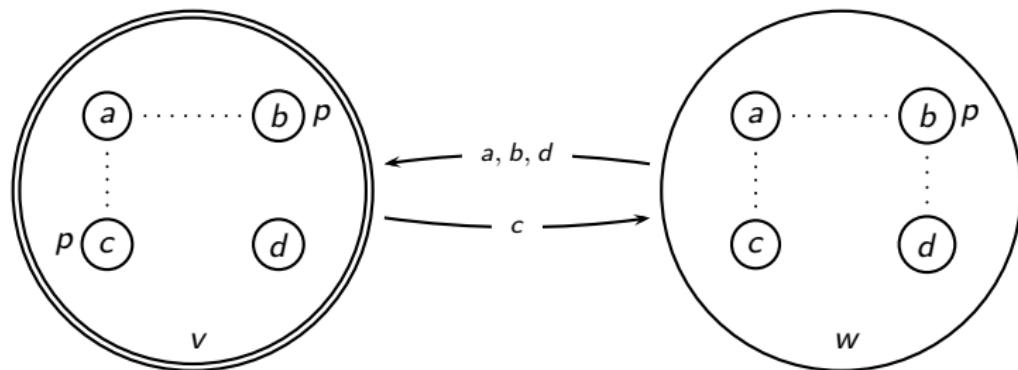
- ▶ \underline{n} the unique agent at which the nominal n holds
- ▶ $s(a)$ the comparability class of state s relative to agent a : $t \in s(a)$ iff $s \leq_a t$ or $t \leq_a s$
- ▶ $\text{best}_a s(a)$ the most plausible states in $s(a)$ according to a : $\text{best}_a s(a) := \{s \in s(a) : t \leq_a s$ for all $t \in s(a)\}$

Example



- ▶ $M, v, \underline{c} \models p$
- ▶ $M, v, \underline{a} \models Fp$
- ▶ $M, v, \underline{a} \models \langle F \rangle b$
- ▶ $M, w, \underline{d} \models FBp$
- ▶ $M, w, \underline{a} \models BFp$

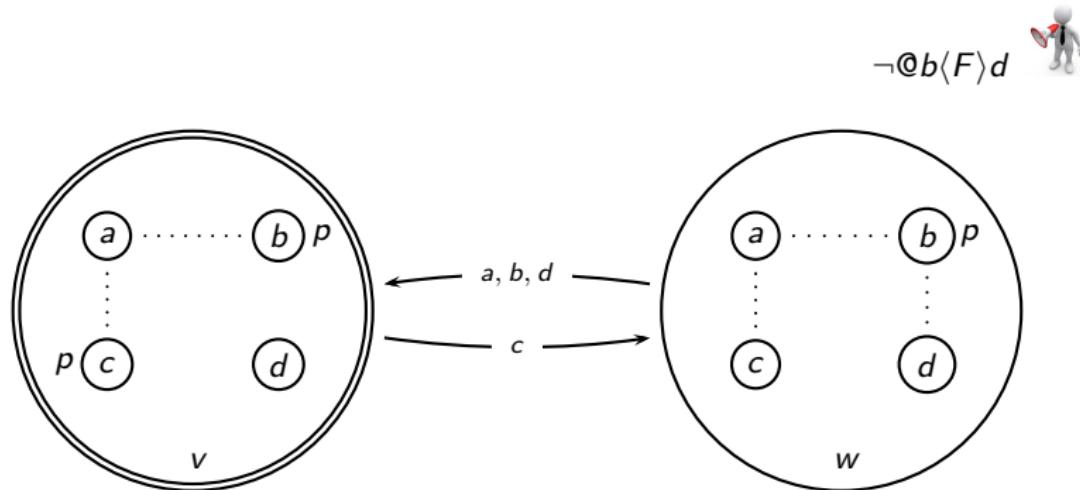
Example



- ▶ $M, v, \underline{c} \models p$
- ▶ $M, v, \underline{a} \models Fp$
- ▶ $M, v, \underline{a} \models \langle F \rangle b$

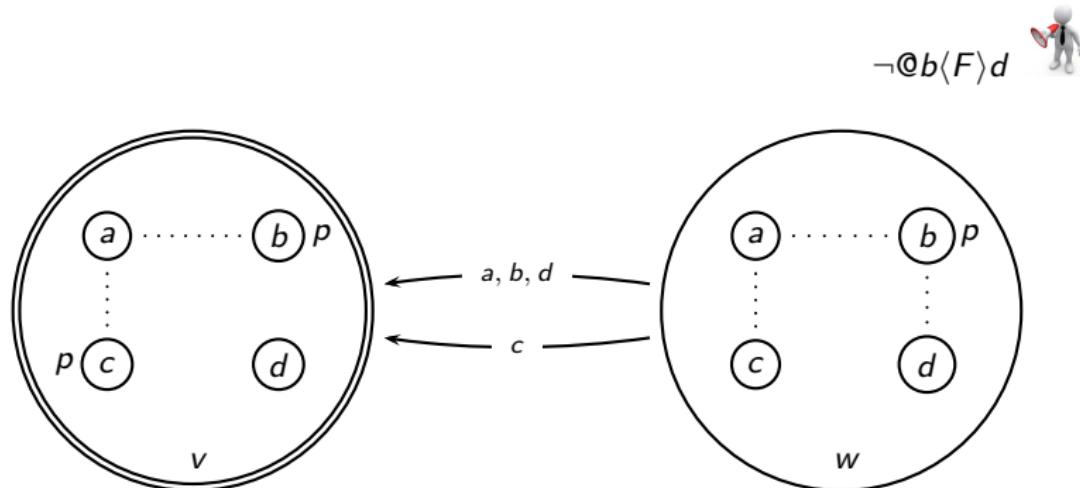
- ▶ $M, w, \underline{d} \models FBp$
- ▶ $M, w, \underline{a} \models BFp$
- ▶ $M, w, \underline{c} \models B@b\langle F \rangle d$

Example



- $M, v, \underline{c} \models p$
- $M, v, \underline{a} \models Fp$
- $M, v, \underline{a} \models \langle F \rangle b$
- $M, w, \underline{d} \models FBp$
- $M, w, \underline{a} \models BFp$
- $M, w, \underline{c} \models B@b(F)d$

Example



- $M, v, \underline{c} \models p$
- $M, v, \underline{a} \models Fp$
- $M, v, \underline{a} \models \langle F \rangle b$

- $M, w, \underline{d} \models FBp$
- $M, w, \underline{a} \models BFp$
- $M, w, \underline{c} \models B \neg @b \langle F \rangle d$

Influence dynamics

Simplifying assumptions

- ▶ agents speak in turn (rank)
- ▶ only friends communicate
- ▶ agents revise with (all) sentences announced (trust)

Revision operator

Joint radical upgrade $\uparrow\phi$

- ▶ “Promote” all the $\|\phi\|$ -worlds so that they become more plausible than all $\neg\|\phi\|$ -worlds (in the same information cell), keeping everything else the same:

Revision operator

Joint radical upgrade $\uparrow\phi$

- ▶ “Promote” all the $\|\phi\|$ -worlds so that they become more plausible than all $\neg\|\phi\|$ -worlds (in the same information cell), keeping everything else the same:
- ▶ $\uparrow\phi$ is a model transformer which takes as input any model $\mathcal{M} = (S, \mathcal{A}, \leq_{a \in \mathcal{A}}, \|\cdot\|, s_0, \asymp_{s \in S})$ and outputs a new model $\mathcal{M}' = (S, \mathcal{A}, \leq'_{a \in \mathcal{A}}, \|\cdot\|, s_0, \asymp_{s \in S})$ such that:
 $s \leq'_a t$ iff either $(s, t \notin \|\phi\| \text{ and } s \leq_a t)$ or $(s, t \in \|\phi\| \text{ and } s \leq_a t)$ or $(t \in s(a) \text{ and } s \notin \|\phi\| \text{ and } t \in \|\phi\|)$.

Belief merge

Baltag & Smets' lexicographic belief merge protocol

$$\rho_a := \prod \{\uparrow \phi : \|\phi\| \subseteq S \text{ such that } \mathcal{M}, w \models B_a \phi\}$$

$$\rho_b := \prod \{\uparrow \phi : \|\phi\| \subseteq S \text{ such that } \mathcal{M}_{[\rho_a]}, w \models B_b \phi\}$$

etc for all $c \in \mathcal{A}$

where \prod is a sequential composition operator and $\mathcal{M}_{[\rho_a]}$ is the new model after joint revision with each formula announced by a .

Belief merge

Indexical lexicographic belief merge protocol

$$\rho_a := \prod \{ \uparrow \textcircled{a} \phi : \|\phi\| \subseteq S \times \mathcal{A} \text{ such that } \mathcal{M}, w, a \models B\phi \}$$

$$\rho_b := \prod \{ \uparrow \textcircled{b} \phi : \|\phi\| \subseteq S \times \mathcal{A} \text{ such that } \mathcal{M}_{[\rho_a]}, w, b \models B\phi \}$$

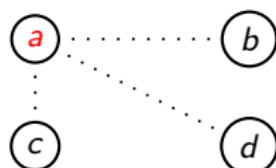
etc for all $c \in \mathcal{A}$

where \prod is a sequential composition operator and $\mathcal{M}_{[\rho_a]}$ is the new model after joint revision with each formula announced by a .

A central friend

Assumptions

- ▶ **a** is other agents' only friend.
- ▶ **a** speaks first.



One-to-others unilateral strong influence protocol

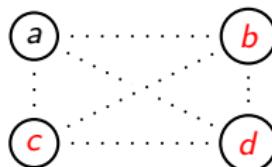
One step version of the indexical lexicographic belief merge protocol:

$$\rho_a := \prod \{ \uparrow @_a \phi : \|\phi\| \subseteq S \times \mathcal{A} \text{ such that } \mathcal{M}, w, \underline{a} \models B\phi \}$$

Everybody is friends with everybody else

Assumption

- ▶ Connectedness



Others-to-one unilateral strong influence protocol

$$\rho_b := \prod \{ \uparrow @_b B\phi : \|\phi\| \subseteq S \times \mathcal{A} \text{ such that } \mathcal{M}, w, \underline{b} \models B\phi \}$$

$$\rho_c := \prod \{ \uparrow @_c B\phi : \|\phi\| \subseteq S \times \mathcal{A} \text{ such that } \mathcal{M}, w, \underline{c} \models B\phi \}$$

etc, for all $d \in \mathcal{A}$ such that $\mathcal{M}, w, d \models \langle F \rangle a$

$$\rho_a := \prod \{ \uparrow @_a \phi \text{ iff } \mathcal{M}_{[\rho_b; \rho_c, \dots]}, w, \underline{a} \models BFB\phi \}$$

where $\mathcal{M}_{[\rho_b; \rho_c, \dots]}$ is the model resulting from the successive revisions (by all friends) with each of the formulas announced by each of them.

Summary

- ▶ Social network plausibility framework with communication events
- ▶ Indexical protocol to merge beliefs
- ▶ Unilateral strong influence *one-to-all-the-others* protocol
- ▶ Unilateral strong influence *all-the-others-to-one* protocol

To do next

- ▶ Private (and synchronic?) communication: *friends to friends* influence (level of privacy to determine)
- ▶ Different doxastic attitudes (conditional belief, strong belief, safe belief) + different levels of trust (dynamic attitudes) corresponding to different types of revision (minimal revision, update).
- ▶ Consider how to merge (as quickly as possible) knowledge and/or belief within a social network.

Thank you

zoe.christoff@gmail.com

References

- Baltag, A. and Smets, S. (2009).
Protocols for belief merge: Reaching agreement via communication.
volume 494 of *CEUR Workshop Proceedings*, pages 129–141.
- Baltag, A. and Smets, S. (2013).
Protocols for belief merge: Reaching agreement via communication.
Logic Journal of the IGPL, 21(3):468–487.
- Liu, F., Seligman, J., and Girard, P.
Logical dynamics of belief change in the community.
Synthese.
Special Issue on Social Epistemology, C. Proietti and F. Zenker, editors, to appear.
- Seligman, J., Liu, F., and Girard, P. (2011).
Logic in the community.
In Banerjee, M. and Seth, A., editors, *Logic and Its Applications*, volume 6521 of *Lecture Notes in Computer Science*, pages 178–188. Springer Berlin Heidelberg.